





The Northridge Earthquake - 30 Years Later A Catalyst for Engineering Resilient Communities

Episode 1: The January 17, 1994 Northridge Earthquake – Science & Engineering Aspects K. Hudnut, J. Stewart, C. Davis, D. Cocke <u>EarthquakeCountry.org/northridge30-webinar1/</u>

Episode 2: Insurance Issues and Impacts Following the Northridge Earthquake C. Scawthorn, J. Maffei EarthquakeCountry.org/northridge30-webinar2/











The Northridge Earthquake - 30 Years Later

A Catalyst for Engineering Resilient Communities 2024 Webinar Series

## **Episode 3: 30 Years of Progress in Quantification of Seismic Hazards**

## Yousef Bozorgnia

Professor, Department of Civil and Environmental Engineering, & Director, Natural Hazards Risk and Resiliency Research Center (NHR3), UCLA











4





## **Progress in ground motion models (GMMs)**

- Ground motion models" (GMMs)...also known as GMPEs
- They are scaling models of ground motions with respect to magnitude, distance, site conditions, ...
- For active tectonic regions, the models are mainly based on observations or empirical data, i.e., recorded ground motions



8

## Some historical milestones in developments of GMMs

★ 1964 Esteva & Rosenblueth:  $a = c \exp(\alpha M) R^{-\beta}$ 

★ 1970 Esteva:  $a = c_1 \exp(c_2 M)(R + c_3)^{-c_4}$  ★ 1978 Sadigh, et al.:  $\ln(y) = \ln A + BM_s + E \ln[R + d \exp(fM_s)]$  ★ 1981 Campbell:  $PGA = a \exp(bM)[R + c_1 \exp[(c_2 M)]^{-d}$  ★ 1981 Joyner & Boore:  $\log y = \alpha + \beta M - \log r + br$ ;  $r = (d^2 + h^2)^{1/2}$ 

### For sure there more important contributions

## **1994 Northridge earthquake**

- Provided a well-recorded set of ground motions
- An important Reverse faulting EQ that provided a contrast between hanging wall and footwall ground motions



Source: Wald and Heaton (1994). Open-File Report 94-278



10

## What we had in 1994

- Distance measures: Joyner & Boore distance, seismogenic distance,...
- Soil condition was considered important
  - It was mainly classified as "hard rock", "soft rock", "stiff soil", "soil"
  - Boore et al. started using scaling with  $V_{\rm S30}$
- Concept of "magnitude saturation" was acceptable by some researchers



# 1994 vs 2024 In 1994 era, the traditional seismic hazard research projects were mainly individual or a small group of researchers Interactions among GMM developers were relatively minor We now have major expansion of community-based research projects Community-based programs broke the "walls" between research teams Research teams learn from each other



## Examples of major technical progress on ground motion modeling











## Database evolution

Selected databases for ground motion for modeling:

- 1994 database: 645 recordings (from 47 EQs)
- 2014 database: 15,521 recordings (from 322 EQs)
- Database size increased by a factor of 24





## **Availability of databases in 1994 vs 2024**

- In 1994: Most of the ground motion databases were not public (with some exceptions)
  - Individual teams had their own databases
- In 2024: Any data used to develop models are made available to the public...PGA, PGV, PSA, FAS, AI,...
- All NGA flatfiles are shared with the public
- Database is checked multiple times by multiple teams

## Models...in 1994

## ✤ A typical ground motion model

$$\ln Y = b_1 + b_2(M - 6) + b_3(M - 6)^2 + b_5 \ln r + b_V \ln \frac{V_s}{V_A} \quad ; \quad r = \sqrt{r_{jb}^2 + h^2}$$

24



## In 2024...the following features are covered for crustal events

Most GMMs are applicable to:

- M: 3 to 8.5 (strike-slip)
- Distance: 0 to 300km
- Hanging wall and footwall sites
- Soil V<sub>S30</sub>: 150-1500 m/sec
- Soil nonlinearity
- Deep basin effects
- Style of faulting: Strike-slip, Reverse, Normal
- Period: 0-10 seconds



26

## In 1994

- After the Northridge EQ, vertical ground motion attracted attention of engineers because of:
  - High vertical accelerations recorded and,
  - Collapses of bridges and a department store





## In 1994 we knew...

- Vertical / Horizontal spectral ratio (V/H)
  - Is a strong function of distance and period
  - Should not use 2/3 as a scaling factor for V/H
  - And, the Northridge confirmed it...





